11,822 research outputs found

    The UNAM-KIAS Catalog of Isolated Galaxies

    Full text link
    A new catalog of isolated galaxies from The Sloan Digital Sky Survey (DR5) is presented. 1520 isolated galaxies were found in 1.4 steradians of sky. The selection criteria in this so called UNAM-KIAS catalog was implemented from a variation on the criteria developed by Karachentseva 1973 including full redshift information. Through an image processing pipeline that takes advantage from the high resolution (~ 0.4 ''/pix) and high dynamic range of the SDSS images, a uniform g band morphological classification for all these galaxies is presented. We identify 80% (SaSm) spirals (50% later than Sbc types) on one hand, and a scarce population of early-type E(6.5%) and S0(8%) galaxies amounting to 14.5% on the other hand. This magnitude-limited catalog is ~ 80% complete at 16.5, 15.6, 15.0, 14.6 and 14.4 magnitudes in the ugriz bands respectively. Some representative physical properties including SDSS magnitudes and color distributions, color-color diagrams, absolute magnitude-color, and concentration-color diagrams as a function of morphological type are presented. The UNAM-KIAS Morphological Atlas is also released along with this paper. For each galaxy of type later than Sa, a mosaic is presented that includes: (1) a g-band logarithmic image, (2) a g band filtered-enhanced image where a Gaussian kernel of various sizes was applied and (3) an RGB color image from the SDSS database. For E/S0/Sa galaxies, in addition to the images in (1), (2) and (3), plots of r band surface brightness and geometric profiles (ellipticity, Position Angle PA and A4/B4 coefficients of the Fourier series expansions of deviations of a pure ellipse) are provided...Comment: 40 pages, 17 figures and 3 table

    The UNAM-KIAS Catalog of Isolated Galaxies

    Full text link
    A new catalog of isolated galaxies from The Sloan Digital Sky Survey (DR5) is presented. 1520 isolated galaxies were found in 1.4 steradians of sky. The selection criteria in this so called UNAM-KIAS catalog was implemented from a variation on the criteria developed by Karachentseva 1973 including full redshift information. Through an image processing pipeline that takes advantage from the high resolution (~ 0.4 ''/pix) and high dynamic range of the SDSS images, a uniform g band morphological classification for all these galaxies is presented. We identify 80% (SaSm) spirals (50% later than Sbc types) on one hand, and a scarce population of early-type E(6.5%) and S0(8%) galaxies amounting to 14.5% on the other hand. This magnitude-limited catalog is ~ 80% complete at 16.5, 15.6, 15.0, 14.6 and 14.4 magnitudes in the ugriz bands respectively. Some representative physical properties including SDSS magnitudes and color distributions, color-color diagrams, absolute magnitude-color, and concentration-color diagrams as a function of morphological type are presented. The UNAM-KIAS Morphological Atlas is also released along with this paper. For each galaxy of type later than Sa, a mosaic is presented that includes: (1) a g-band logarithmic image, (2) a g band filtered-enhanced image where a Gaussian kernel of various sizes was applied and (3) an RGB color image from the SDSS database. For E/S0/Sa galaxies, in addition to the images in (1), (2) and (3), plots of r band surface brightness and geometric profiles (ellipticity, Position Angle PA and A4/B4 coefficients of the Fourier series expansions of deviations of a pure ellipse) are provided...Comment: 40 pages, 17 figures and 3 table

    Analysis of water-soluble vitamins in biopharma raw materials by electrophoresis micro-chips with contactless conductivity detection

    Get PDF
    Detailed information concerning the composition of the raw materials employed in the production of biologics is important for the efficient control and optimization of bioprocesses. The analytical methods used in these applications must be simple and fast as well as be easily transferable from one site to another. In that context, microchip‐based electrophoresis represents a promising tool for application in the analysis of raw materials in biologics. Using electrophoresis micro‐chips, analysis times can be reduced to seconds and high separation efficiencies can be achieved using extremely low volume samples, minimal reagent consumption and waste generation, low cost/disposability, portability and ease of mass‐production [1]. Additionally the use of Capacitively Coupled Contactless Conductivity Detection (C4D) offers a rather simple and yet sensitive method for detection of ionic species. Recently, C4D has gained much popularity as on‐chip detection in electrophoresis micro‐chips [2]. The main reason for this is that there is no physical contact of the detection electrodes with the electrolyte solution. Therefore, the integration of this detection mode within the analytical system is rather simple. Furthermore, the background noise is significantly reduced leading to lower detection limits than the conventional contact conductivity detection. Vitamins are present at very low concentrations in biopharma raw materials and are usually determined using HPLC and CE methods [3]. Electrophoresis micro‐chips are a very good alternative to these techniques due to the shorter analysis time and yet very good resolution, among others. In this paper, we present the application of electrophoresis micro‐chips with C4D detection to the analysis of water‐soluble vitamins in raw materials used for the production of biologics in bioreactors. For that purpose, hybrid PDMS/glass chips were fabricated by using standard photolithographic techniques (Figure 1). The chip structure contains an extremely long channel of 101 mm (50 x 50 μm width x depth). Figure 2 shows the setup used for vitamins detection

    Exponential Convergence Towards Stationary States for the 1D Porous Medium Equation with Fractional Pressure

    Get PDF
    We analyse the asymptotic behaviour of solutions to the one dimensional fractional version of the porous medium equation introduced by Caffarelli and V\'azquez, where the pressure is obtained as a Riesz potential associated to the density. We take advantage of the displacement convexity of the Riesz potential in one dimension to show a functional inequality involving the entropy, entropy dissipation, and the Euclidean transport distance. An argument by approximation shows that this functional inequality is enough to deduce the exponential convergence of solutions in self-similar variables to the unique steady states

    Solid flow drives surface nanopatterning by ion-beam irradiation

    Get PDF
    Ion Beam Sputtering (IBS) is known to produce surface nanopatterns over macroscopic areas on a wide range of materials. However, in spite of the technological potential of this route to nanostructuring, the physical process by which these surfaces self-organize remains poorly under- stood. We have performed detailed experiments of IBS on Si substrates that validate dynamical and morphological predictions from a hydrodynamic description of the phenomenon. Our results elucidate flow of a nanoscopically thin and highly viscous surface layer, driven by the stress created by the ion-beam, as a description of the system. This type of slow relaxation is akin to flow of macroscopic solids like glaciers or lead pipes, that is driven by defect dynamics.Comment: 12 pages, 4 figure
    corecore